www.vscom.de

OnRISC

TIoT Manual
Edition: May 2022

-

Vision Systems GmbH
Tel: +49 40 528 401 0

Fax: 449 40 528 401 99

Web: www.visionsystems.de
Support: faq.visionsystems.de

\
A
com

http://www.visionsystems.de
http://faq.visionsystems.de

The software described in this manual is furnished under a license agreement and may be used
only in accordance with the terms of that agreement.

Copyright Notice

Copyright © 2009-2022 Vision Systems. All rights reserved. Reproduction without permission is
prohibited.

Trademarks

VScom is a registered trademark of Vision Systems GmbH. All other trademarks and brands are
property of their rightful owners.

Disclaimer

Vision Systems reserves the right to make changes and improvements to its product without pro-
viding notice.

Vision Systems provides this document “as is”, without warranty of any kind, either expressed or
implied, including, but not limited to, its particular purpose. Vision Systems reserves the right
to make improvements and/or changes to this manual, or to the products and/or the programs
described in this manual, at any time.

Information provided in this manual is intended to be accurate and reliable. However, Vision
Systems assumes no responsibility for its use, or for any infringements on the rights of third parties
that may result from its use.

This product might include unintentional technical or typographical errors. Changes are period-
ically made to the information herein to correct such errors, and these changes are incorporated
into new editions of the publication.

May 2022 OnRISC IoT Manual 2

Contents

Contents

1 Introduction 6
2 loT Related Protocols 7
2.1 MQTT . o o e e e 7
2.1.1 Imstallation e 7
2.1.2 Example: mqtt_gpio. 8
3 loT Programming: Node-RED 11
3.1 OnRISC Devices (Baltos) 11
3.1.1 Imstallation L 11
3.1.2 Example: Connect WLAN switch toa User LED 12
3.1.3 Example: GPIO Access via Modbus/TCP, 13
3.2 Interface Converter (NetCAN Plus, NetCom Plus) 18
3.2.1 Emabling Node-RED Support o 18
3.2.2 Upload Node-RED Configuration File 18
3.2.3 Import Node-RED Examples 18
3.2.4 Documentation of the Node Functions 19
3.2.5 Setting Device Parameters over SNMP Nodes 20
3.2.6 NetCAN Modes of Operation, 21
3.2.6.1 SocketCAN 21
3.2.6.1.1 Preparation. o o 21

3.2.6.1.2 Example of a simple TCP raw NetCAN emulation (ASCII
protocol) 22
3.2.6.1.3 Example with MQTT broker 23
3.2.6.2 NetCAN Legacy o oo i i i e e e e 23
3.2.6.2.1 Preparation. o 23
3.2.6.2.2 Example with TCP Raw Port 24
3.2.7 NetCom Modes of Operation 26
3.2.7.1 Native Serial Port L o o 26
3.2.7.1.1 Preparation. Lo 26
3.2.7.1.2 Example of a simple serial TCP raw Server 26
3.2.7.1.3 Example of a simple serial UDP Server and Client 27
May 2022 OnRISC IoT Manual 3

List of Figures

List of Figures

1 Baltos as IoT Router 6
2 MQTT Scheme e e 7
3 Node-RED: libonrisc Nodes 12
4 Node-RED: WLAN switch and LED: Initial Scheme 13
5 Node-RED: WLAN switch and LED: Configured Scheme 13
6 Node-RED: Modbus/GPIO Example Flow Chart 14
7 Node-RED Modbus/GPIO Example Dashboard 15
8 Node-RED: Modbus Write Node 15
9 Node-RED: Modbus Client Configuration 16
10 Node-RED: Modbus Read 16
11 Node-RED: modbus2bin Function 17
12 Enabling Node-RED o e 18
13 Node-RED import nodes e 19
14 Node-RED Documentation Window 19
15 snmpwalk example oL Lo 20
16 snmpget example oL e 20
17 snmpset example L oL 20
18 snmpset example properties Lo L e 21
19 Disabling of CAN port 21
20 NetCAN emulation example L L 22
21 Function node source code Lo e e 22
22 MQTT nodes o e e 23
23 MQTT example. o e e e 23
24 Emabling of CAN port e 24
25 TCPexample o e e e e 24
26 Config CAN Channel code o 0 25
27 Disabling of serial port 26
28 TCP raw serial server example 26
29 Serial port settings 27
30 UDP serial server exampleo e 27
31 Serial port settings oL 28

May 2022 OnRISC IoT Manual 4

List of Tables

List of Tables

1 MQTT Scheme o e 7

May 2022 OnRISC IoT Manual 5

1 Introduction

1 Introduction

This manual gives insight into IoT universe and also shows how OnRISC can be used as an IoT
Router. For deeper understanding we recommend to look at this free eBook: A Reference Guide
To The Internet Of Things'.

IoT or the Internet of Things is a technology about connecting physical devices like sensors and
actuators to the cloud in order to analyse data collected from physical devices and control the
actuators. So the role of OnRISC will be to talk to sensors/actuators via its interfaces like CAN,
Ethernet, serial, GPIO, WLAN etc. and provide this data to a cloud service (see Figure 1 on page
6). OnRISC device can be either a gateway between the sensors and the cloud and/or maintain
controlling logic.

g ob .5 Sensorl
% Morr Hn
<—>
<—>
m o Digita Outp

| 3 / Baltos Actuatorl

BAcnet «——— Sensor2

Figure 1: Baltos as IoT Router

The first section explains IoT related protocols and how you can store your data in the cloud. In
the second section you’ll learn how you can create your loT applications via visual flow control
framework almost without a coding effort.

The examples shown in the manual require either Buildroot or Debian installation, but the concept
can be applied to other Linux distributions too.

"https://bridgera.com/ebook/

May 2022 OnRISC IoT Manual 6

https://bridgera.com/ebook/

2 loT Related Protocols

2 1oT Related Protocols

There are many protocols used in IoT world: MQTT, HTTP, CoAP, AMQP etc. We will describe
only MQTT protocol as it is wide spread and it is supported by the most IoT cloud providers like
Amazon, IBM and Microsoft.

2.1 MQTT

As stated on the projects site? MQTT is a machine-to-machine (M2M)/"Internet of Things" connec-
tivity protocol. It was designed as an extremely lightweight publish/subscribe messaging transport.
It is useful for connections with remote locations where a small code footprint is required and/or
network bandwidth is at a premium. As of version 3.1.1 MQTT became an OASIS Standard.

MQTT utilizes a “publish/subscribe” message transport model. The central part of this protocol is
a MQTT broker, that receives, manages and routes messages among its nodes. Client authentication
and authorization is also made by the MQTT broker. Table 1 on page 7 and Figure 2 on page
7 provide a MQTT example where three publishers send temperature sensor values (T1-T3) and
three subscribers receiving only relevant values.

’ Topic Name ‘ Subscriber ‘

T1 Subl, Sub3
T2 Sub2
T3 Sub2, Sub3

Table 1: MQTT Scheme

Publisherl-..___T1 - Subscriberl (Subl)
\\\\\\ ~fMoTT) < T2, T3 |
PUblisher2—— %> | BrovER | < Subscriber2 (Sub2)
T3 > .11, T3
Publisher3 ...—" S T Subscriber3 (Sub3)

Figure 2: MQTT Scheme

2.1.1 Installation

Buildroot already provides both C and Python protocol implementations:

« BR2_PACKAGE_PAHO MQTT_C

o BR2_PACKAGE PYTHON PAHO MQTT
If you need OpenSSL support, it must be activated prior to MQTT building.
Debian installation requires following steps for C protocol implementation:

1. apt install libssl-dev debhelper fakeroot lsb-release

Zhttp://mqtt.org

May 2022 OnRISC IoT Manual 7

http://mqtt.org

2 loT Related Protocols

cd /usr/src/

git clone https://github.com/eclipse/paho.mqtt.c.git

cd paho.mqtt.c/

mkdir build

cd build

cmake .. -DPAHO WITH SSL=TRUE -DPAHO BUILD DEB_PACKAGE=TRUE

make

© ® N e ks wN

cpack
10. dpkg -i *.deb
For Python implementation:
1. apt install python-pip python3-pip
2. pip install paho-mqgtt - for Python 2.x environment

3. pip3 install paho-mqgtt - for Python 3.x environment

2.1.2 Example: mqtt_gpio

This program publishes Baltos digital inputs:
 onrisc/gpio/input/0
o onrisc/gpio/input/1
o onrisc/gpio/input/2
e onrisc/gpio/input/3
And subscribes to digital outputs:
o onrisc/gpio/output/0
o onrisc/gpio/output/1
o onrisc/gpio/output/2
o onrisc/gpio/output/3

If any output on the MQTT broker would change, Baltos would propagate this value to its digital
outputs. And as soon as Baltos inputs change their state, these values will be propagated to the
MQTT broker.

In order to build the C test example perform:

cd /usr/src/

—_

git clone https://github.com/visionsystemsgmbh /programming examples.git
cd programming__examples/mqtt/c/

mkdir build

cd build/

ARl R

May 2022 OnRISC IoT Manual 8

2 loT Related Protocols

6. cmake ..

7. make
mgtt_gpio has following syntax:
mqtt_gpio IP address [port]

1P address indicates MQT'T broker’s IP address and port is an optional argument specifying broker’s
TCP port (default value is 1883).

mgtt_gpio requires following setup:
1. MQTT broker (either on Baltos or on your host)
2. connect INO with OUTO using a 4,7k resistor

For our example we will use Node.js based broker Mosca® running on a desktop PC. Install Node.js
according to the project’s documentation®. After this invoke:

1. npm install mosca pino -g with super user permissions
2. mosca -v | pino

We assume, that your host has IP address 192.168.1.170 and MQTT broker works with the standard
TCP port 1883. On Baltos invoke:

./mqtt_gpio 192.168.1.170

You’ll get following output showing that Baltos sent its initial digital input state:

Waiting for up to 10 seconds for publication of O

on topic onrisc/gpio/input/0 for client with ClientID: Baltos
Message with token value 2 delivery confirmed

Message with delivery token 2 delivered

Waiting for up to 10 seconds for publication of O

on topic onrisc/gpio/input/1 for client with ClientID: Baltos
Message with token value 3 delivery confirmed

Message with delivery token 3 delivered

Waiting for up to 10 seconds for publication of O

on topic onrisc/gpio/input/2 for client with ClientID: Baltos
Message with token value 4 delivery confirmed

Message with delivery token 4 delivered

Waiting for up to 10 seconds for publication of 0

on topic onrisc/gpio/input/3 for client with ClientID: Baltos
Message with token value 5 delivery confirmed

Message with delivery token 5 delivered

Mosca’s output shows, that client with ID “Baltos” has made a connection and subscribed to the
topic "onrisc/gpio/output/#" i.e. all published outputs:

3http://www.mosca.io
“https://nodejs.org/en/download /package-manager

May 2022 OnRISC IoT Manual 9

http://www.mosca.io
https://nodejs.org/en/download/package-manager

2 loT Related Protocols

[2017-09-13T15:25:52.565Z] INFO (mosca/16765 on debian9): client connected
client: "Baltos"

[2017-09-13T15:25:52.571Z] INFO (mosca/16765 on debian9): subscribed to topic
topic: "onrisc/gpio/output/#"
qos: 1
client: "Baltos"

Let’s toggle OUT1:
onrisctool -a -0x10 -b 0x10

In reaction to this mqtt_gpio would produce following output:

Waiting for up to 10 seconds for publication of 1

on topic onrisc/gpio/input/0 for client with ClientID: Baltos
Message with token value 6 delivery confirmed

Message with delivery token 6 delivered

May 2022 OnRISC IoT Manual

10

3 loT Programming: Node-RED

3 loT Programming: Node-RED

3.1 OnRISC Devices (Baltos)

Node-RED? is a programming tool for wiring together hardware devices, APIs and online services
in new and interesting ways.

It provides a browser-based editor that makes it easy to wire together flows using the wide range
of nodes in the palette that can be deployed to its runtime in a single-click.

Initial Node-RED installation already provides a lot of useful functions like sending/receiving UD-
P/TCP packets, working with HTTP/MQTT and other protocols. The framework can also be
extended via various third-party modules (see this collection®) and as Node-RED is written around
Node.js” you can access any Node.js modules via “function” node or create your own Node-RED
nodes®.

3.1.1 Installation

In Buildroot you’ll have to activate Node.js package and provide a list of required modules:
e BR2_PACKAGE_OPENSSL
o BR2_PACKAGE_NODEJS
e BR2_PACKAGE_NODEJS_MODULES_ADDITIONAL="node-red node-red-dashboard"
e BR2_PACKAGE_NODE_RED_CONTRIB_LIBONRISC
For Debian 9 perform following steps:
1. apt install -y apt-transport-https
echo "deb https://deb.nodesource.com/node_6.x stretch main" > /etc/apt/sources.list.d/nodesource.list
wget —q0- https://deb.nodesource.com/gpgkey/nodesource.gpg.key | apt-key add -
apt update
apt install -y nodejs

npm install -g node-red node-red-dashboard

NS otk N

install libonrisc Node.js and Node-RED bindings as explained on respective GitHub pages’

Shttps://nodered.org

Shttps://flows.nodered.org/

"https://nodejs.org/en/

8https://nodered.org/docs/creating-nodes/

“https://github.com/visionsystemsgmbh /libonrisc and https://github.com /visionsystemsgmbh/node-red-contrib-
libonrisc

May 2022 OnRISC IoT Manual 11

https://nodered.org
https://flows.nodered.org/
https://nodejs.org/en/
https://nodered.org/docs/creating-nodes/
https://github.com/visionsystemsgmbh/libonrisc
https://github.com/visionsystemsgmbh/node-red-contrib-libonrisc
https://github.com/visionsystemsgmbh/node-red-contrib-libonrisc

3 loT Programming: Node-RED

3.1.2 Example: Connect WLAN switch to a User LED

This introductory example shows how to use Node-RED editor and create a simple flow connecting
WLAN switch to a User LED (green LED on Baltos LED tower). This example will work only
with Baltos iR5221/3220 devices.

Start Node-RED process:
node-red

We assume that Baltos has its default IP address 192.168.254.254. As soon as you can see the
output shown below, you can point your browser to http://192.168.254.254:1880).

Welcome to Node-RED

15 Sep 08:53:43 - [info] Node-RED version: v0.17.5

15 Sep 08:53:43 - [info] Node.js version: v6.11.3

15 Sep 08:53:43 - [info] Linux 3.18.32 arm LE

15 Sep 08:53:47 - [info] Loading palette nodes

15 Sep 08:54:05 - [info] Dashboard version 2.4.3 started at /ui

15 Sep 08:54:07 - [info] Settings file : /root/.node-red/settings.js
15 Sep 08:54:07 - [info] User directory : /root/.node-red
15 Sep 08:54:07 - [info] Flows file : /root/.node-red/flows_onrisc. json

15 Sep 08:54:07 - [info] Server now running at http://127.0.0.1:1880/
15 Sep 08:54:07 - [info] Starting flows
15 Sep 08:54:08 - [info] Started flows

Scroll the Node’s panel till you find “libonrisc” section (see Figure 3 on page 12). With left mouse
button pressed drag at first “onrisc wlan sw” node and then “onrisc led” node. Now find the
“output” section and drag the “debug” node. Connect all three nodes as shown in Figure 4 on page
13.

v libonrisc

onrisc led

onrisc gpio

wirite

onrisc gpio
read

onnsc dip

onrisc wlan
SW

onrisc uart
mode

Figure 3: Node-RED: libonrisc Nodes

Perform a double-click on the “onrisc-wlan-sw” node. Specify “Name” as “WLAN switch” and
“Rate” as 1000 (the value is in milliseconds). Click on “Done” to finish editing node. Now perform

May 2022 OnRISC IoT Manual 12

3 loT Programming: Node-RED

o]
onrisc-led

oo /
onrisc-wlan-sw
\ P
msg.payload

Figure 4: Node-RED: WLAN switch and LED: Initial Scheme

— o]
Green LED

==

aQ

WLAN switch /
\ °
msg.payload

Figure 5: Node-RED: WLAN switch and LED: Configured Scheme

a double-click on the “onrisc-led” node and specify “Name” as “Green LED” and select “App” in
the LED drop-down list. Click on “Done”. You'll get following flow (see Figure 5 on page 13).

Click on “Deploy” button in the upper right corner to start the flow. Clicking on “Debug” tab
in the upper right corner will show messages produced by the “debug” node. Below you can see
two messages received with one second difference. This is the reading rate we configured in the
“onrisc-wlan-sw” node.

10/10/2017, 11:21:36 AMnode: 7bb06521.99decc

msg.payload : number

0

10/10/2017, 11:21:37 AMnode: 7bb06521.99decc
msg.payload : number

0

Now toggle Baltos WLAN switch and you’ll see the green LED turning on and off depending on
the switch position.

3.1.3 Example: GPIO Access via Modbus/TCP

In this example you’ll learn Node-RED’s dashboard!? feature, that allows you to create GUL. It will
also show how to use Modbus!! in Node-RED. We will need a modbusgpio daemon (see Section
“GPIO over Modbus/TCP” in the User Manual) and hence this example will work only in Debian.
Perform following actions:

1. cd /usr/src/

2. git clone https://github.com/visionsystemsgmbh/programming_examples.git

3. cp programming_examples/node-red/gpio.json /root/.node-red/flows_onrisc.json
4

. npm install -g --unsafe-perm node-red-contrib-modbus

Ohttps: //github.com/node-red /node-red-dashboard
Hhttps://github.com/biancode/node-red-contrib-modbus

May 2022 OnRISC IoT Manual 13

https://github.com/node-red/node-red-dashboard
https://github.com/biancode/node-red-contrib-modbus

3 loT Programming: Node-RED

5. modbusgpio 502&
6. node-red

Point your browser to http://192.168.254.254:1880/. You'll see the flow chart as shown in Figure 6
on page 14. Now open a new tab in your browser and point it to http://192.168.254.254:1880/wi/#/0
to see the dashboard as shown in Figure 7 on page 15. You can click on the switches to change
the digital output state and if you connect INs with OUTs via 4,7k resistors, you'll see, how digital
inputs get changed accordingly.

Let’s look at Modbus related nodes. Double-click on the “output0” node and you’ll see configuration
panel as shown in Figure 8 on page 15. As one can see we write the incoming value to toggle a
single coil at address 4. This is OUTO on Baltos. “baltoslocal” describes the network connection
to a Modbus/TCP server (see Figure 9 on page 16). In this case the server is on the Baltos itself
so we can reach it via 127.0.0.1 address.

Double-click on the “inputl” node will show “Modbus Read” node (see Figure 10 on page 16). We
read 4 input status bits from address 0, i.e. INO..IN3 on the Baltos green connector. Reading rate
1 second. This node returns an array with true or false values. In order to show single inputs we
need a function node “modbus2bin”, that converts the array to binary output.

The dashboard consists of one tab “Baltos Modbus GPIO Example” and two groups “Inputs” and
“Outputs”. The “switch” nodes toggle digital outputs and the “text” nodes show input state and
are assigned to the related group.

QuTOo
s 9
B active
ouTH
LSS E—
B active
ouT2
S E—
B active
ouT3
L I |
B active
INO
IN1
/ : N2 I
f :) _
e — modbus2bin [e————
. _ N3

reading done

Figure 6: Node-RED: Modbus/GPIO Example Flow Chart

May 2022 OnRISC IoT Manual 14

3 loT Programming: Node-RED

Inputs

INO

IN1

IN2

IN3

Outputs
1 0OuTo
0 OuTl
1 OuT2
0 OuT3

Edit Modbus-Write node

Delete Cancel

~ node properties

Figure 7: Node-RED Modbus/GPIO Example Dashboard

Dane

¥ Name outputo|

A Unit-ld 1

EFC FC 5: Force Single Coil v

M Address 4

n baltoslocal &
&5 Show Activities 7]

£ Show Errors 7

Figure 8: Node-RED: Modbus Write Node

May 2022

OnRISC IoT Manual

15

3 loT Programming: Node-RED

IModbus-Write = Edit modbus-client node

Delete Cancel

¥ Name | baltoslocal |
A Type TCP v

M Host 127.0.01

M Eort 202

n DEFAULT r

A Unit-1d 1

© Timeout (ms) | 1000

@ Reconnect
timeout (ms) 2000

£22 Log states changes =]
55 Queue commands 7]
© Queue delay (ms) 1

Figure 9: Node-RED: Modbus Client Configuration

Edit Modbus-Read node

Delete Cance Done

~ node properties

% Name | input1| |
A Unit-Id 1

EFC FC 2: Read Input Status v

A Address 0

A Quantity 4

M Boll Rate 1 second(s) v

@ Server baltoslocal i
£52 Show Activities]

£i2 Show Errors v

Figure 10: Node-RED: Modbus Read

May 2022 OnRISC IoT Manual

3 loT Programming: Node-RED

Edit function node

Delete Cancel Done

~ node properties

¥ Name modbus2bin| |

Function

1 war data = msg.payload;

2 var obj = [@, @, @, 8];

3 wvar i;

4

Srfor (1 =8; 1 <4; i++) {

6~ if (data[i]) {

7 obj[i] = 1;

SA

9+ %

18
i 11 msg.payload = obj
i 12 return msg

3¢ Outputs 1

Figure 11: Node-RED: modbus2bin Function

May 2022 OnRISC IoT Manual

17

3 loT Programming: Node-RED

3.2 Interface Converter (NetCAN Plus, NetCom Plus)
3.2.1 Enabling Node-RED Support

The server configuration page of the NetCAN and NetCom Plus gives you the option to enable the
Node-RED support and configure the default TCP port of the service. If you do so, the converter
will be restarted and the service is running. Please note, that the start of the Node-RED service
takes a little bit longer than the normal NetCAN or NetCom Plus startup routines.

Node-RED
Node-RED®[On ™|
TCP Port®@
Config File:

Config File: | Datei auswihlen | Keine ausgewihlt | Upload

Open Worksheet in new window
Open Dashboard in hew window

Figure 12: Enabling Node-RED

3.2.2 Upload Node-RED Configuration File

You can download Node-RED’s configuration file over the web-frontend, edit parameters of your
choice and upload it back to your device (Figure 12 on page 18). Take a look at Node-RED’s online
documentation for all its settings '°. One of the most important parts is the securing your device
and setting a password for your dashboard '*. The password is a Berypt hash and can be generated

with Node-RED’s command line tools on your host or with an online generator of your choice .

3.2.3 Import Node-RED Examples

To import our flow examples and make use of them, you first have to download the desired ones
from our GitHub repository '°. Then you must open Node-RED’s worksheet over the provided link
from 12. Now you can open the import dialog from the main menu and paste the example source
into the text box or open the file directly (Figure 13 on page 19). And it doesn’t hurt to take a
look at the examples from the other device classes to build up a general understanding.

2https://nodered.org/docs /user-guide /runtime/configuration

B3https://nodered.org/docs/user-guide/runtime/securing-node-red
Mhttps://berypt-generator.com/
Bhttps://github.com/visionsystemsgmbh /programming__examples/tree/master/CAN /node-red

May 2022 OnRISC IoT Manual 18

https://nodered.org/docs/user-guide/runtime/configuration
https://nodered.org/docs/user-guide/runtime/securing-node-red
https://bcrypt-generator.com/
https://github.com/visionsystemsgmbh/programming_examples/tree/master/CAN/node-red

3 loT Programming: Node-RED

Import nodes
Clipboard Paste flow json or| X select a file to import
Local =
{
"id": "fdb1bfE5.a0e44",
Examples "type™: "socketcan-out™,
"z": "1c44fa93.633f45",
“name”: "socketcan-out™,
"config": "4495d04@.ad577",
"x": 495,
"y": 548,
“wires": [
[
"4f23%9ecb5612cal5"
]
]
b
{
"id": "dceldb57.c@7fbs"™,
“socketcan-in”,
"z": "1c44fa93.633f45", -
Importto | currentflow | new flow

Figure 13: Node-RED import nodes

3.2.4 Documentation of the Node Functions

If you are unsure with any parameter at any point of time, you can use Node-RED’s worksheet
documentation feature (Figure 14 on page 19). There you'll find hints and descriptions of config
node parameters and its practical meaning.

& help i @) B8 S

~ Node Help
> @ node-red
> @ node-red-contrib-libonrisc
> @ node-red-contrib-modbus
> @ node-red-contrib-socketcan
> @ node-red-dashboard
~ @ node-red-node-serialport

serial in

serial out

serial request

serial-port

> ® node-red-node-snmp

serial request
Provides a connection to a request/response serial port.
This node behaves as a tightly coupled combination of serial inand serial out nodes, with which it shares the configuration

Send the request message in msg. payload as you would do with a serial out node. The message will be forwarded to the serial
port following a strict FIFO (First In, First Out) queue, waiting for a single response before transmitting the next request. Once a
response is received (with the same logic of a serial in node), or after a timeout occurs, a message is sent to the output (see
Outputs below), with msg. payload containing the received response (or missing in case if timeout) and all other properties are
preserved.

For consistency with the serial in node, msg.port is set to the name of the port selected.
v Inputs
« msg.timeout is the imeout (in ms) after which the incoming message is propagated to the output with msg. status set to

“ERR_TIMEOUT" and missing payload. If not present, the default value is 10000 (10s)
msg. count if set this will override the configured number of characters as long as it is less than the number configured

stream and then start the output.
Optionally the baudrate can be changed using msg. baudrate

v Outputs

+ msg.payload s the response. If no response occured, this property is removed
* msg.status is "OK" in case a response is received, or "ERR_TIMEOUT" if a timeout occurs.
« Any other property coming from the input will be preserved.

Figure 14: Node-RED Documentation Window

msg.waitfor must be a single character, escape code, or hex code. If set, the node will wait until it matches that character in the

OnRISC IoT Manual

19

3 loT Programming: Node-RED

3.2.5 Setting Device Parameters over SNMP Nodes

All NetCAN and NetCom Plus device settings can be configured with SNMP 6. We have console
tools!” to get/set SNMP settings and the related MIB files are part of the firmware archive'® (see
the snmp folder inside the ZIP file). You can also omit the MIB files and use the numerical OIDs
with Node-RED’s SNMP nodes directly. To get the desired one, you can take a look at the MIB
files and read them out or call snmpwalk for a sub-tree (Figure 15 on page 20).

c:\Tools\SNMP>snmpwalk -c public -v1 192.168.1.89 VSCOM-MIB::vsCom
::vsnciSerialNumber.® = Gauge32: 210168110
::vsnciSwVersion.® = Gauge32: 262144
::vsnciHwVersion.® = Gauge32: 262146
::vsnciConfigPort.® = INTEGER: 23
::vsncilpAddress.® = IpAddress: 192.168.1.89

::vsnciIpNetMask.® = IpAddress: 255.255.255.8

::vsnciBcastAddress.® = IpAddress: 192.168.1.255
::vsnciIPUseDHCP.@® = INTEGER: 1
::vsnciInternalControl.® = INTEGER: nop(®@)
::vsnciPrdType.® = STRING: "Plus 111"
::vsnciGateway.® = IpAddress: 192.168.1.1
::vsnciDNSServer.® = IpAddress: ©.9.8.8

Figure 15: snmpwalk example

Next, you can run snmpget with the “-On” switch for a single parameter returning its full OID
(Figure 16 on page 20).

c:\Tools\SNMP>snmpget -c public -v1 -On 192.168.1.89 VSCOM-MIB: :vsncilpAddress.e

.1.3.6.1.4.1.12695.1.6.8 = IpAddress: 192.168.1.89

Figure 16: snmpget example

Now insert a snmpset node into your flow and set its properties to the desired values (Figure 18 on
page 21). You must take care, that the community name is set to root or if you’d set a password
for your device, the community name must be the plain text password. And also note that every
parameter change must be saved into the flash with the object “vsncilnternalControl(10)” and the
value “commit-flash(2)”.

inject snmp set 127.0.0.1

Figure 17: snmpset example

https://en.wikipedia.org/wiki/Simple Network Management Protocol
Yhttps://www.vscom.de/download /multiio/winXP /tools/netcom-tools.zip
Bhttps://www.vscom.de/download /multiio/others/driver/

May 2022 OnRISC IoT Manual 20

https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
https://www.vscom.de/download/multiio/winXP/tools/netcom-tools.zip
https://www.vscom.de/download/multiio/others/driver/

3 loT Programming: Node-RED

Edit snmp set node

Delete Cance m

% Properties & B =
Q@ Host 127.0.0.1

& Community | root

R Version vi v Timeout 58S

[
{
"oid": "1.3.6.1.4.1.12695.1.6.0",
"type": "IpAddress”,

® Varbinds "value": "192.168.1.227"

"oid": "1.3.6.1.4.1.12695.1.10.0",
"type": "Integer”,
"value": 2

¥ Name

Tip: Numeric inputs must be numbers not strings, e.g. 1 not "1".

Figure 18: snmpset example properties

3.2.6 NetCAN Modes of Operation

3.2.6.1 SocketCAN

3.2.6.1.1 Preparation

The SocketCAN node is based on the node-red-contrib-socketcan'? module. In order to be able to
use the module, you must disable the CAN port in the channel configuration of the NetCAN’s Plus
web front-end (Figure 19 on page 21).

Transfer Settings

Channel 1
PortType®
Mode® 2
inactive
TCP Port(Control) @[2000] X

TCP Port(Data]®

KeepAliveMode®
KeepAIiueInterual@E

Figure 19: Disabling of CAN port

If you do so, you can switch to Node-RED’s worksheet view. Therefore visit the web front-end on
the default port 1880 (e.g. http://<IP address>:1880).

¥https://github.com/grodansparadis/node-red-contrib-socketcan

May 2022 OnRISC IoT Manual 21

https://github.com/grodansparadis/node-red-contrib-socketcan

3 loT Programming: Node-RED

3.2.6.1.2 Example of a simple TCP raw NetCAN emulation (ASCII protocol)

We create a basic function set of the original NetCAN firmware function with this example (Figure
20 on page 22). You should download the sample flow from our GitHub repository and import it

in Node-RED 2.

P

tcp:2001 i

L
0 connections

&

socketcan-out | ———

L
@ connected <can0=

Convert ASCII fo Frame

-

Convert Frame to ASCGH

L8

socketcan-in

@ connected =can0=

tep:

Figure 20: NetCAN emulation example

The flow contains two function nodes which convert the ASCII frames to Node-RED’s SocketCAN
structure and vice versa. As you can see, its quite simple to add your own processing of the relevant
data (Figure 21 on page 22).

Edit function node

Delete
£+ Properties
¥ Name Convert ASCI to Frame
£ Setup On Start On Message On Stop
1- function hexToBytes(hex) {
2 for (var bytes = [1, ¢ = @ c < hex 2)
3 bytes. push(parseInt (hex.substr
2 return bytes;
5+ 1}
6
7 omd = msg.payload;
3
9 if (cmd.charAt(®).toUpperCase() === 'T')
16- {
11 can - { canfd: fal
12
13 if (cmd.charat(e
14~ {
15 can.ext = true;
16 can.canid = Number('@x’ + cmd.substring()
17 can.dlc = Number('@x' + cmd.substring(9, 18));
18 can.data = hexToBytes(cmd.substring(18));
19 answer = 'Z\r';
20- ¥
21 else // standard frame
22~ {
23 can.ext e;
24 can.canid mber('@x’ + cmd.substrin
25 can.dlc = Number('8x' + cmd.substring(
26 can.data = hexToBytes(cmd. substring(
27 answer = 'z\r';
28+
29
30 msg = { payload: can };
3 msg2 = { payload: answer };
32 return [msg, msg2]
13-}
34 else if (cmd.toUpperCase() === 'V')
35 answer = 'viele\r';
36 else if (cmd.toUpperCase(
37 answer = 'N12345678\r'
38 else if (cmd.toUpperCase(
39 answer - 'Fea@\r’
46 else if (cmd.toUppercCase(
1 cmd. charat (0) .t
4z cmd. charAt
a3 cmd . charat (@) .t
a4 emd . charat (6
a5 answer = '\r'
46 else
47 answer = '\b\r'; // error status
48
a9 msg.payload = ansuer;
56 return [null, msgl;

Figure 21: Function node source code

2Ohttps://github.com/visionsystemsgmbh /programming _examples/tree/master/CAN /node-
red/flow_ netcan__emulation__tcp.json

May 2022

OnRISC IoT Manual

22

https://github.com/visionsystemsgmbh/programming_examples/tree/master/CAN/node-red/flow_netcan_emulation_tcp.json
https://github.com/visionsystemsgmbh/programming_examples/tree/master/CAN/node-red/flow_netcan_emulation_tcp.json

3 loT Programming: Node-RED

3.2.6.1.3 Example with MQTT broker

For this example you can use your own MQTT broker as shown in the section 2.1 or a free one as
the broker.emqx.io ?!. You can find the associated nodes (Figure 22 on page 23) in the network
section of Node-RED’s worksheet.

~ network
mugtt in IJ1ZI
I#I muott out |

Figure 22: MQTT nodes

Then you can draw a simple flow on the worksheet (Figure 23 on page 23).

] 0000022240102030405 :_I—le WSCOMfsOCketoanimessage]

@ connected

- - e o

wsCom/socketcanimessage {1 socketcan-in

_J

= L
@ connected ® connected =cani-

e ! I) 3
socketean-out () () function ¢ :—:E R

L
@ connected <cani=

Figure 23: MQT'T example

This example sends out a text formatted frame to the MQTT broker which will be received from
the client on the other side and directed to the connected SocketCAN node that it sends out to
the physical CAN port. You can download and import this flow (Figure 23 on page 23) from our
GitHub example repository 2.

3.2.6.2 NetCAN Legacy

3.2.6.2.1 Preparation

To use the legacy mode of the NetCAN Plus which works with the built-in functions of its firmware,
you should leave all port type settings enabled and set your desired parameters (Figure 24 on page
24).

https: //www.emgx.io/
https:/ /github.com /visionsystemsgmbh/programming_examples/tree/master/CAN /node-
red/flow__mqtt_broker.json

May 2022 OnRISC IoT Manual 23

https://www.emqx.io/
https://github.com/visionsystemsgmbh/programming_examples/tree/master/CAN/node-red/flow_mqtt_broker.json
https://github.com/visionsystemsgmbh/programming_examples/tree/master/CAN/node-red/flow_mqtt_broker.json

3 loT Programming: Node-RED

Transfer Settings
Channel 1
PurtTypl@ active
active
M°d'm _nacﬁv‘e = x

TCP Port(Data) @[2001 |
Max.Clients®@ |1

Figure 24: Enabling of CAN port

3.2.6.2.2 Example with TCP Raw Port

You can communicate with the NetCAN’s Plus built-in functions locally over TCP for example
(Figure 25 on page 24). The “Config CAN Channel” injection node runs once and configures the
initial parameters of the CAN channel. You could inject a test frame with the “Inject Test Frame”
node which send it out to the TCP request node. This one also retrieves the incoming frames and
status on the CAN port and prints it out to the debug node.

This example could also be downloaded from our repository * and imported into a Node-RED
flow.

@ Config CAN Channel ' H ASCII Commands §>\

) @ connected
@ Inject Test Frame H ASCIl Commands

Figure 25: TCP example

tep:localhost:2001

Figure 26 on page 25 shows you the initialization code of the function node triggered once from
"Config CAN Channel".

Zhttps://github.com/visionsystemsgmbh /programming _examples/tree/master/CAN /node-
red/flow_ legacy_ tcp.json

May 2022 OnRISC IoT Manual 24

https://github.com/visionsystemsgmbh/programming_examples/tree/master/CAN/node-red/flow_legacy_tcp.json
https://github.com/visionsystemsgmbh/programming_examples/tree/master/CAN/node-red/flow_legacy_tcp.json

3 loT Programming: Node-RED

Edit function node

Delete Cancel

£+ Properties
W Name ASCIl Commands
£+ Setup On Start On Message On Stop

1 msg.payload = “C\rS8\ro\r”
2 return msg;

Figure 26: Config CAN Channel code

o

E]

=)

May 2022

OnRISC IoT Manual

25

3 loT Programming: Node-RED

3.2.7 NetCom Modes of Operation

3.2.7.1 Native Serial Port

3.2.7.1.1 Preparation

The native serial port node is based on the node-red-node-serialport®* module. In order to be able
to use the module, you must disable the serial port in the serial config page of the NetCom’s Plus
web front-end (Figure 27 on page 26).

Serial Settings

Port 1

PortType (current) rs232
Baud Base 3000000
PortType @ [rs232 V|
Baudrate ® =

Manual ® 115200
FlowType @ [None hd
DataBit @ g~

Figure 27: Disabling of serial port

If you do so, you can switch to Node-RED’s worksheet view. Therefore visit the web front-end on
the default port 1880 (e.g. hitp://<IP address>:1880).

3.2.7.1.2 Example of a simple serial TCP raw Server

This example creates a simple server which listens on the configured TCP port and routes the data
to the serial port and vice versa (Figure 28 on page 26). This example is also available from our
Git repository 2.

tcp:2001 /dev/ttyVS0
i

@ connectec

/dev/ttyVS0O tep:

Figure 28: TCP raw serial server example

You must configure your desired serial port parameters in the node settings tab (Figure 29 on
page 27). The serial ports device files of the NetCom Plus devices are assigned in the form of
“/dev /tty VS[0-16]".

2 https://github.com/node-red /node-red-nodes/tree/master /io/serialport
Zhttps://github.com /visionsystemsgmbh /programming examples /tree/master/COM-ports/node-
red/flow__tcp__serial _server.json

May 2022 OnRISC IoT Manual 26

https://github.com/node-red/node-red-nodes/tree/master/io/serialport
https://github.com/visionsystemsgmbh/programming_examples/tree/master/COM-ports/node-red/flow_tcp_serial_server.json
https://github.com/visionsystemsgmbh/programming_examples/tree/master/COM-ports/node-red/flow_tcp_serial_server.json

3 loT Programming: Node-RED

Edit serial out node > Edit serial-port node

Delete Cancel Update

Properties - BENE]
3G Serial Port | /dev/ttyVSO Q
4 Settings Baud Rate Data Bits ~ Parity Stop Bits
~ 115200 8 v None Vv 1 v
DTR RTS CTs DSR
auto Vv auto Vv auto v auto v
) Input
Optionally wait for a start character of then
Splitinput | on the character v \n
and deliver ASCII strinas v
@® Output

Add character to output messages

= Request

Default response timeout 10000 ms

Tip: the "Split on" character is used to split the input into separate
messages. Can accept chars ($), escape codes (\n), or hex codes
(0x03)

Figure 29: Serial port settings
3.2.7.1.3 Example of a simple serial UDP Server and Client

The example shows a simple UDP client and server flow which transfers binary data between the
serial port (Figure 30 on page 27). You'll find the example in our Git repository 2°.

udp 2002 [F——{ fdevittyVS0

@ connected

fdevittyysQ udp 192.168.1.37:2002

@ connected

Figure 30: UDP serial server example

Figure 31 on page 28 shows the parameters of the serial in node which transfers the incoming data
after a timeout of 10 ms to UDP out node and its configured destination.

26https: //github.com /visionsystemsgmbh /programming _examples/tree/master/ COM-ports/node-
red/flow__udp_ serial_ client_ server.json

May 2022 OnRISC IoT Manual 27

https://github.com/visionsystemsgmbh/programming_examples/tree/master/COM-ports/node-red/flow_udp_serial_client_server.json
https://github.com/visionsystemsgmbh/programming_examples/tree/master/COM-ports/node-red/flow_udp_serial_client_server.json

3 loT Programming: Node-RED

Edit serial in node > Edit serial-port node

Delete Cancel Update
%+ Properties % =B
3G Serial Port /devittyVS0 Q
Settings Baud Rate Data Bits Parity Stop Bits
« 115200 8 v Nome v 1 v
DTR RTS CTS DSR
auto v auto v auto Vv auto Vv
#) Input
Optionally wait for a start character of , then
Splitinput after a timeout of v 10 ms
and deliver | pinary buffers v
@ Output

Add character to output messages
= Request

Default response timeout 10000 ms

Tip: In timeout mode timeout starts from arrival of first character.

Figure 31: Serial port settings

May 2022

OnRISC IoT Manual

	1 Introduction
	2 IoT Related Protocols
	2.1 MQTT
	2.1.1 Installation
	2.1.2 Example: mqtt_gpio

	3 IoT Programming: Node-RED
	3.1 OnRISC Devices (Baltos)
	3.1.1 Installation
	3.1.2 Example: Connect WLAN switch to a User LED
	3.1.3 Example: GPIO Access via Modbus/TCP

	3.2 Interface Converter (NetCAN Plus, NetCom Plus)
	3.2.1 Enabling Node-RED Support
	3.2.2 Upload Node-RED Configuration File
	3.2.3 Import Node-RED Examples
	3.2.4 Documentation of the Node Functions
	3.2.5 Setting Device Parameters over SNMP Nodes
	3.2.6 NetCAN Modes of Operation
	3.2.6.1 SocketCAN
	3.2.6.1.1 Preparation
	3.2.6.1.2 Example of a simple TCP raw NetCAN emulation (ASCII protocol)
	3.2.6.1.3 Example with MQTT broker

	3.2.6.2 NetCAN Legacy
	3.2.6.2.1 Preparation
	3.2.6.2.2 Example with TCP Raw Port

	3.2.7 NetCom Modes of Operation
	3.2.7.1 Native Serial Port
	3.2.7.1.1 Preparation
	3.2.7.1.2 Example of a simple serial TCP raw Server
	3.2.7.1.3 Example of a simple serial UDP Server and Client

